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A system of nonlinear equations for steady one-dimensional heat
and mass transfer problems is considered, Analytical solutions
are obtained for certain special cases, k

In a previous paper (4) we have considered a non-
linear system of differential equations of steady-state
heat and mass transfer, and we have presented the
solutions for several special cases. In the present
work we consider the more general system

£ (a0 2+ e, 1-L) =,
A
LhoL)=q0 ()
dx dx ’

where the function 6 (u, t) is a function of either t or u
only. We shall consider certain cases in which the
nonlinear system (A) can be solved exactly by analyt-
ic methods.

The second equation in (A) can be rewritten in the
form

(t)( ) —q()=0,  (B)

where

ah

7\' 0= Tdt

Introducing the variables
ME)=N@MD), 9 =—q(tVr@),

we can transform (B) into

a2
dx?

+ 200 ( —d‘-if )2~q, ) =0. )

Equation (Bf) can be completely solved by analytic
methods for a wide class of functions A( and ¢; with
boundary conditions of the first, second, or third
kind. We shall demonstrate three possible methods of
solution for this nonlinear equation.

1. Assuming z(t) = dt/dx, we can transform equa-
tion (B') into Bernoulli's equation,

for the unknown z = z(t), which can be solved analyt-
ically for all continuous A, and q,. Thus equation (B')
can be solved by two quadratures.

2, Using the substitution v(t) = (dt/dx)?, we can
reduce the nonlinear equation (B') to the linear equa- -
tion

dv
e 20 (Dv = 29, (0).
& F2um{Hv 91 (£)

Integrating this equation, we obtain the function v =
= y(t) + ¢y and then find the function t = t(x) from the
equation

f—-di—‘—x c
Veb e T

3. Multiplying (B) by £2A(t)dt/dx (the plus sign
corresponds to A > 0, we obtain for the function t =
= t(x) the equation

Yo (;’x—) = j MOlg () dt =,

which can be integrated analytically.

The constants c; and ¢, are determined by the
boundary conditions for t, which may be of the first,
second, or third kind.

‘Thus the equation (B) or (B') can be completely
solved by two quadratures for a wide class of functions
A(t), g(t), and AMt).

For the sake of brevity we shall not present here

-the solutions of (B!) which we have obtained for var-

ious forms of the functions A(t) and q(t) with boundary
conditions of the first, second, or third kind. Solving
(B) or (B') by one of the above methods, we can obtain
t as a function of the independent variable x.

In the following discussion we shall show that the
integration of the nonlinear system (A) depends, in

‘general, on the possibility of solving the first equa-

tion of this system,
In fact, assume 6 = 6(t). Then, solving the second

‘equation, we can represent the derivative dt/dx by

means of a known function f (x), i.e. dt/dx =f(x). The
first equation of (A) then becomes

{2 .
a2 +awsiw | =kw.  ©

We shall now consider those cases in which we can
obtain an exact solution of the nonlinear equation (C),
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and hence a solution of the system (A), by analytic
methods.

I. First consider the case when 6(t) = 1/VV({) * ¢;
(2) or 8(t) = 1/f (x). The first equation of (A) then
becomes

7‘;1‘: + ay(u) G%Y + ay () %:f— +h(w) =0, (1)
where
-1 da )
@ (1) a(u) du » a(u)’

The substitution p(u) = du/dx reduces (1) to Abel's
equation

J ‘
L ra@pra@p+h@=0 (2)

pdu

which can be solved only in certain special cases.

The case h(u) = 0 (and, consequently, h;(u) = 0)
is of particular interest. In this case equation (2)
becomes linear in p and can easily be integrated for a
wide class of function a;(u). Thus, if h = 0 the system
(A) can be integrated to the end by analytic methods.
This case has a practical application in problems of
heat and mass transfer. Some solutions of this case
were given (4).

II. Let now § = é(t) be an arbitrary function and
let h(u) = au, where a(u) = a = const. Solving the second
equation in (A) we find t = t(x). The product 6 (t)dt/dx
is then a known function f (x). The first equation in
(A) becomes, then,

d’u
d :\.2

—u=—f(x), (3

where f Y(x) = df /dx. Equation (3) is the well known
equation of forced oscillations, which can be integrated
analytically to the end. Its general solution is

u =cyexplx) + cgexp(—x) — ( f (¢)sh(x —£fde.

[}

Taking account of the boundary conditions (of the first,
second, or third kind), we obtain the constants c¢5 and
¢y4. Thus, the nonlinear system (A) can be completely
solved also in this case.

III. Let a{u) =a = const, 6{u) = u, h(u) = 0 and let
dt/dx = f (x) be a known function, obtained by differ-
entiating the solution of the second equation of the
system (A). The first equation of the system then
becomes ' ‘

d ( du

Rt o)t —
dy dy tul (-\)| 0. )

or

d*u oy du . :
e b F{X) e 4+ {u=-0.

dy?
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The solution of this equation is
u=eF[C;+ C, ‘\' efdx],

where F(x) = [ f(x)dx. The constants cz and ¢, are then
found from the boundary conditions for u = u(x), yield-
ing the final solution of (A).

IV. System (A) can be solved also in a case more
general than the last one. Let, in contrast to Case
11, h(u) = alq(x) — bu], where q(x) is a known function
and b is a constant. Instead of equation (4) we now
have

R R P P 10 N
dx? dx

This is the well known equation of super-regeneration

of a receiver (2). The general solution of (5), with

the constants ¢; and ¢, determined from the boundary
condition, constitutes an exact analytic solution of the

nonlinear system under consideration.

In conclusion we shall present another case, even
more complex than the last one, in which system (A)
can be solved by quadratures.

V. Let a(u) = a = const, 6(u) = u, dt/dx =f (x) and
h(u) = a/u. The first equation in (A) becomes now

_ du
dx?

+ f(x)g“—+f'<x)u=——‘—. (6)
X u

This equation has been studied in detail by Leko [3].
Its general solution is

[expl[f(x)dx]dx =cs[exp[[edelde + ¢,
u=cgexp(fede) exp[— [[(x)dx],

where ¢ is a parameter and c;, ¢4 are arbitrary con-
stants determined as before by the boundary condi-
tions for u = u(x). The parameter ¢ is introduced by
the auxiliary equation

d*x dx \? dx
] et — :0’
de? Tf(a)(ds) Edss.

which is used in the integration of (6).
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